BENEFRI Workshop 2019

Methods in Experimental Neurosciences: From Animal Models to Humans

fMRI in Neuroscience

Andrea Federspiel

Psychiatric Neuroimaging Unit Translational Research Center University Hospital of Psychiatry University of Bern

andrea.federspiel@upd.unibe.ch

b UNIVERSITÄT BERN

roadmap

UNIVERSITÄT BERN

9:15-10:00 Basic concepts of functional Neuroimaging

fMRI Signal, task-dependent fMRI, resting state fMRI, Functional Network Analysis, processing pipeline, statistical testing, Random Effects, General Linear Model and MRI physics.

10:15-11:00 Basic concepts of structural Neuroimaging

Voxel Based Morphometry, Cortical Thickness, Cortex based inter-subject alignment, Diffusion Tensor Imaging, Tract-Based Spatial Statics.

11:15-12:00 Advanced Neuroimaging Methods in Neurosciences

> Non-BOLD fMRI, Cerebral Blood flow (CBF), calibrated fMRI, Multimodal Imaging.

Variance in the neigbourhood

UNIVERSITÄT BERN

b

U

Closer lock at BOLD signal

UNIVERSITÄT BERN

b

 $\boldsymbol{u}^{\mathsf{T}}$

Variance in:		68/28/23	69/28/23
gm		301.18	415.69
BOLD (fit)		238.26	250.76
gm - BOLD(fit)		50.41	177.43
wm	298.35		
csf	273.24		
motion	0.06		

roadmap

D UNIVERSITÄT BERN

9:15-10:00 Basic concepts of functional Neuroimaging

fMRI Signal, task-dependent fMRI, resting state fMRI, Functional Network Analysis, processing pipeline, statistical testing, Random Effects, General Linear Model and MRI physics.

10:15-11:00 Basic concepts of structural Neuroimaging

Voxel Based Morphometry, Cortical Thickness, Cortex based inter-subject alignment, Diffusion Tensor Imaging, Tract-Based Spatial Statics.

11:15-12:00 Advanced Neuroimaging Methods in Neurosciences Non-BOLD fMRI, Cerebral Blood flow (CBF), calibrated fMRI, Multimodal Imaging.

fMRI "roadmap"

- > Slice Time correction
- > Coregistration (2D fmri \rightarrow 3D anatomy)
- > Segmentation (3D anatomy)
- > Normalisation (3D anatomy)
- > 1. and 2. level statistics

b UNIVERSITÄT BERN

White paper on fMRI

b UNIVERSITÄT BERN

https://www.humanbrainmapping.org/files/2016/COBIDASreport.pdf

Committee on Best Practices in Data Analysis and Sharing (COBIDAS)

Organization of Human Brain Mapping (OHBM)

Suggestions and recommendations on how to deal with fMRI Data

Data acquisition, Design, Data analyisis, etc.

Functional Magnetic Resonace Imaging fMRI: measure of neuronal activity?

^b UNIVERSITÄT BERN

Stimulus

Reaction

Measure BOLD = Blood Oxygen Level Dependent

Concentration between Oxyhemoglobin (diamagnetic) and Deoxyhemoglobin (paramagnetic) in the veins

BOLD contrast high

* fMRI (engl. functional magnetic resonance imaging)

If neuronal activity high

Paramagnetic: Magnetic field lower

Image Orientation

UNIVERSITÄT BERN

Proc. Natl. Acad. Sci. USA Vol. 87, pp. 9868–9872, December 1990 Biophysics

Brain magnetic resonance imaging with contrast dependent on blood oxygenation

(cerebral blood flow/brain metabolism/oxygenation)

S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank

Biophysics Research Department, AT&T Bell Laboratories, Murray Hill, NJ 07974

Proc. Natl. Acad. Sci. USA Vol. 89, pp. 5951-5955, July 1992 Neurobiology

Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging

(cerebral blood flow/blood oxygenation/visual cortex/positron emission tomography/magnetic susceptibility)

Seiji Ogawa[†], David W. Tank[†], Ravi Menon[‡], Jutta M. Ellermann[‡], Seong-Gi Kim[‡], Hellmut Merkle[‡], and Kamil Ugurbil[‡]

What does Neuroimaging means?

D UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

100% O2

90% O2 / 10% CO2

Ogawa S. et al. PNAS 1992 89: 5951-5955

Contrast signal in different regions

D UNIVERSITÄT BERN

b

 \boldsymbol{u}^{\prime}

Active agent responsible for fMRI

D UNIVERSITÄT BERN

Deoxyhemoglobin: paramagnetic ($\chi > 0$) **Hb (4 unpaired e⁻ \longrightarrow S=2)**

Oxyhemoglobin: diamagnetic ($\chi < 0$) **HbO**₂ **S=0** T₂*↓

 T_2^*

fMRI: vasodilatation

^b UNIVERSITÄT BERN

U

fMRI: Neuronal Activity

UNIVERSITÄT BERN

Spike Activity (black / yellow)

BOLD Activity (red)

(Simultan Intracortical / BOLD Measure on wake animal)

Logothetis N.K. et al. Phil. Trans. R. Soc. Lond. B 2002 357: 1003-1037

Balloon Model for understanding BOLD

b UNIVERSITÄT BERN

b

IJ,

TR, TE (repetition- and echo time)

D UNIVERSITÄT BERN

b

U

18

TR, **T**₁ relaxation

b UNIVERSITÄT BERN

U

h

TE, T₂ relaxation

UNIVERSITÄT BERN

T₁ and **T**₂ relaxation times in tissue

D UNIVERSITÄT BERN

b

U

Tissue	T ₁ [ms]	T ₂ [ms]
Gray matter	600	80
White matter	950	100
Blood @ 3T	1450	275
Cerebro Spinal Fluid (CSF)	4500	2200
Fat	250	60

Typical T1 sequence: mp2rage (TA: 8 min 22 sec)

D UNIVERSITÄT BERN

1st inversion

2nd inversion

combined

T_{i1}=700 ms Flip.angl.=4°

T_{i2}=2500 ms Flip.angl.=5°

$u^{\scriptscriptstyle b}$

Typical T2 sequence: multi-band

b UNIVERSITÄT BERN

Variability of BOLD signal

^b UNIVERSITÄT BERN

Healthy subjects/ same acquisition time/same age/male/same.....

•Vascular origin of variability ?

Origin of variability due to different Neuronal Activation ?etc.

fMRI sources of variance

Sequence Susceptibility

Drug/Coffee/Nicotine/ etc. Circadian rhythm/Time

Respiration Cardiac pulsatility in brain 3D Motion

Age Healthy/Patient

(list not complete)

Task-related variability Trial-to-trial variability

 u^{b}

Understanding fMRI signal

^b UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

$$BOLD_{signal} = \frac{Signal}{Noise} = \frac{\sum_{i=1}^{\infty} S_i}{\sum_{i=1}^{\infty} N_i}$$
$$BOLD_{signal} = \frac{\sigma_{Signal}}{\sigma_{Noise}} \qquad \begin{array}{c} \textbf{Maximize} & \text{Signal} \\ \textbf{Minimize} & \text{Noise} \end{array}$$

Signal to Noise Ratio (SNR)

^b UNIVERSITÄT BERN

 $SNR \propto \rho \frac{FOV_x FOV_y}{\sqrt{N_x N_y bw}} \rho_s \sqrt{N_{average}} B_0 f$

- ρ , ρ_s : proton density, slice thickness
- FOV: Field of view in x,y
- N: Number of points in x,y
- bw: sampling bandwidth
- B₀: static magnetic field
- f: sequence parameter (TR, TE, coil, etc...)

3D Head Motion

UNIVERSITÄT BERN

Difficulties

D UNIVERSITÄT BERN

>Motion is 3-dimensional

expected acquisition:

slices are actually acquired like this...

Estimating the motion parameters – from data

^b UNIVERSITÄT BERN

h

Function to minimize

> Coefficient of variation of Ratio

$$E \equiv \frac{\sigma_R}{\mu_R} \qquad \qquad R \equiv \frac{T(image_i)}{image_{base}}$$

Woods, et al.

> Squared difference

$$E \equiv \sum \left[T(image_i) - image_{base} \right]^2 \qquad Hajnal, et al.; Eddy, et al.$$

Frame wise displacement

UNIVERSITÄT BERN

Power JD, et al. 2012; Neuroimage 59: 2142-54

Understanding fMRI signal

UNIVERSITÄT BERN

U

Small motion

$u^{\scriptscriptstyle b}$

Understanding fMRI signal

UNIVERSITÄT BERN

Small motion

3D Head Motion

Raw: strong motion

Corrected: strong motion

Raw: low motion

Corrected: low motion

b UNIVERSITÄT BERN

ั้น

large motion

Understanding fMRI signal

b UNIVERSITÄT BERN

b

U

Understanding fMRI signal

D UNIVERSITÄT BERN

b

U

Global Signal regression
UNIVERSITÄT BERN

b

II,

UNIVERSITÄT BERN

$$BOLD_{signal} = \beta_0 + X_{hrf} * \Theta + \varepsilon$$

[b,dev,stats1] = glmfit(Bold th,Bold measure);

$$BOLD_{signal} = \beta_0 + X_{hrf} * \Theta + S_{WM} + S_{CSF} + S_{GM} + \dots + \varepsilon$$

[b,dev,stats2] = glmfit(
[mot dmot fd wm csf n0 Bold th],Bold measure);

UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

 $BOLD_{signal} = \beta_0 + X_{hrf} * \Theta + S_{WM} + S_{CSF} + S_{GM} + \dots + \varepsilon$

D UNIVERSITÄT BERN

$$\mathbf{Error}^{\mathbf{I}}$$

 $BOLD_{signal} = \beta_0 + X_{hrf} * \Theta + S_{WM} + S_{CSF} + S_{GM} + \ldots + \varepsilon$

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

U

$$BOLD_{signal} = \beta_0 + X_{hrf} * \Theta + S_{WM} + S_{CSF} + S_{GM} + \dots + \delta_{SF}$$

Baseline in fMRI signal

UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

Event related fMRI

General Linear Model

^b UNIVERSITÄT BERN

b

Event related fMRI

How sure can you be ?

UNIVERSITÄT BERN

estimated_HRF

Negative BOLD: challenging

D UNIVERSITÄT BERN

U

Shmuel A. et al., 2006 Nat Neurosc 9(4):569-577.

Negative BOLD: challenging

^b UNIVERSITÄT BERN

b

II,

Negative BOLD: challenging

0.5 Amplitude (a.u.) 0.5 BOLD Neuronal $^{-1}$ 15 20 25 5 10 30 35 40 0 Time (s)

Could NBR be originated by \downarrow CBF ? Caused by hypoxia Could NBR be originated by «vascular steel» ? b UNIVERSITÄT BERN

NBR: BOLD and CBF* measure

* Cerebral Blood Flow (CBF) **S**8 BOLD $p < 3.0 \times 10^{-9}$ -40 -.38 .38 -.8 .8 2 % change BOLD Flow **S**8 $p < 5.0 \times 10^{-2}$ -6-40 -20 0 20 % change blood flow 40 -.17 .17 .8 .8

Conclusion: NBR is associated with a decreased CMRO₂

b UNIVERSITÄT BERN

Resting state/functional connectivity

^b UNIVERSITÄT BERN

b

Ľ

Network analysis

D UNIVERSITÄT BERN

h

U

Double Pendulum: approaching connectivity

D UNIVERSITÄT BERN

Functional coupling

D UNIVERSITÄT BERN

> coupling present

- > connectivity is visible in the angle of both arms
- > interaction of red-to-blue arm

Functional connectivity: assumptions

- > ≈ homogeneous medium in GM
- > ≈ homogeneous medium in WM
- > ≈ micro vasculature
- > ≈ nerve conduction velocity
- > ≈ oxygen extraction fraction
- > ≈ neuro vascular coupling
- > ≈ *k*[ATP]

roi₂

roi₁

roi_n

VIVERSITÄT

Functional connectivity: features

Transport: energy, information

fast

- > large diameter axons
- > high NCV
- > extracellular
- > U-shape fibers

slow

- > small diameter axons
- > low NCV
- > intracellular
- > frontal regions

Thalamo-cortical Network

b UNIVERSITÄT BERN

Thalamus as "seed" ROI

Network analysis (independet components): i.e. each IC corresponds to a specific Network

Ideas behind RSN

D UNIVERSITÄT BERN

Localization <> Causality

functional integration

Statistical steps: GLM

^b UNIVERSITÄT BERN

b

U

Statistical analysis: Design

b UNIVERSITÄT BERN

Design matrix

UNIVERSITÄT BERN

1. Level:subject's leveltask performance, motion, etc.

2. Level: between subjects and within subjectsGroup comparisonresult-generating statistics

D UNIVERSITÄT BERN

Fixed Effects Analysis – (FFX)

concatenating all the subjects runs

Random Effects Analysis – (RFX) generalization to the population level

Fixed Effects Analysis FFX

D UNIVERSITÄT BERN

concatenate subjects

degree of freedom "big"

Allows inference to subject's sample

Random Effects Analysis RFX

D UNIVERSITÄT BERN

concatenate subjects

degree of freedom "smal"

Allows inference to population from the sample cohort

That's science: it's all about assumptions

Procedure	Assumptions
Design	Previous literature
Record data	Patient/Control; Drugs; Cyrcadian rhytm; age; gender; social status; etc MR scanner; Resolution (\vec{x}, t) ; Temperature; Pressure; etc
Prepocess data	Gaussian distribution; serial correlation; Coregistration; Normalize Template; Smooth; etc
1-level statistics	Gaussian distribution; linear trend; GLM residuals; etc
2-level statistics	Gaussian distribution; variance; independent data; GLM residuals; etc.
Inference statistics	Correct p for multiple comparison; Random Field Theory; Smooth Field; Spatial autocorrealtion; etc

^b UNIVERSITÄT BERN

b

U

Multiple testing

D UNIVERSITÄT BERN

Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates

Anders Eklund^{a,b,c,1}, Thomas E. Nichols^{d,e}, and Hans Knutsson^{a,c}

PNAS 2016 Jul 12;113(28):7900-5
What's all about ?

D UNIVERSITÄT BERN

There is activation!

- H_a: alternative hypothesis
- H₀: null hypothesis
- α : false positive rate probability to *reject* H₀ when H₀ is TRUE

No effect

type I error

• β : false negative rate probability to accept H₀ when H_a is TRUE

The probability to make at least one type I error [Family Wise Error Rate (FWER)]

Mutiple testing

UNIVERSITÄT BERN

FWER (voxels):

1 activated voxel

FWER (cluster):

with p_{α} =0.05 find the # voxels in a cluster so that there is a 5 % chance in the cluster to find at least 1 activated voxel

so that there is a 5 %

chance to find at least

find $p_{\alpha} = 0.05$

SPM, FSL, AFNI, non-parametr.

D UNIVERSITÄT BERN

Cluster wise threshold: Not OK for p<0.01

~OK for p<0.001

Voxel wise threshold OK

^b UNIVERSITÄT BERN

Multiple testing (Bonferroni)

b UNIVERSITÄT BERN

If we have 64*64 voxles we do 4096 test:

$$p \le \frac{0.05}{4096} = 0.0000122$$

Example:

df=30; p=0.0000122 t = 1-tinv(0.05/4096,30);

= 5.9834 too conservative !

no correcction

t>5.98

Random Field Theory

UNIVERSITÄT BERN

mathematical model:

-estimate the # RESEL in your search volume

-estimate the # cluster (thresholded at some level)

-and correct the thresholded level

Random Field Theory

UNIVERSITÄT BERN

Independent data: data of one voxel should be independent of its neighbourhood

in fMRI spatial correlation is present !

Smoothness:

should be constant over the brain how to check this ?

Problems when:

- Small sample size

- errors/residuals not normaly distributed and not smooth

Take home

D UNIVERSITÄT BERN

- Check your data carefully (assumptions Y/N ?)
- Investigate into Signal and Noise in your data !
- Careful interpretation of results; especially when dealing with (large) clusters
- Non-parametric SnPM may be an optimal choice
- COBIDAS* White paper with guidelines «best-practices»

DATA PRE-PROCESSING

6 UNIVERSITÄT BERN

Scan-Puls artifact correction

Subtraction of a templateartif

EEG in 3T MRT

DATA PRE-PROCESSING

^b UNIVERSITÄT BERN

After Scan-Puls artifact correction

DATA PRE-PROCESSING

b UNIVERSITÄT BERN

Independent Component Analysis

Decomposition of EEG data into independent factors.

- Scan-Puls artifact
- Cardioballistic
- Epileptiform activity
- Other

ICA FACTORS (EXAMPLE)

UNIVERSITÄT BERN

Example factors coding for epileptiform activity

see www.may.a.man.a.man.a.man.a.man.a.man.a.man.a.man.a.man.a.man.a.man.a.man.a.man.a.man.a.man.a.man.a.man.a.m

Epoch **WITH** interictal spikes.

Epoch **WITHOUT** discharges.

ICA FACTORS (EXAMPLE)

EEG topography.

ICA factor topography.

UNIVERSITÄT BERN

Features extracted from EEG

b UNIVERSITÄT BERN

Spontaneous Activity

- Frequency domain

F12 who who when when when when when when the wh B mounder WWW. www. www. Www. Www. Www. Fe warmen Marine Ma Marine Marin mmmmultimenter and the second se C3 vm a manyamanyamanyamanyamanyanya a คนานหนึ่งหนึ่งไปไปปี การเกิดไปปี เป็นการเกิดไปปี พ.ศ.พ.การเกิดไปไปปี การเกิดไปปี การเกิดไปปี การเกิดไปปี พ.ศ.พ.การเกิดไปปี การเกิดไปปี การเกิดไปปี การเกิดไปปี การเกิดไป พ.ศ.พ.การเกิดไปปี การเกิดไปปี การเกิดไปปี การเกิดไปปี การเกิดไปปี พ.ศ.พ.การเกิดไปปี การเกิดไปปี การเกิดไปปี การเกิดไปปี การเกิดไปปี การเกิดไปปี การเกิดไปปี การเกิดไปปี การเกิดไป FT Marken Window Marken Ma T Manual Marken manus man marken Ma B more many more many more many more many of P7 March Mar P8 worth Mary Marker FCI unternation when the second and the second seco FC2 marmon mar Marmon Marmon Marmon Marmon Marmon Mar Markan a manumany warman wa

Jann et al. (unpublished)

DATA PROCESSING

^b UNIVERSITÄT BERN

b

Convolution with a 'Hemodynamic Response Function' (HRF)

Predictor for fMRI BOLD signal

Features extracted from EEG

D UNIVERSITÄT BERN

Spontaneous Activity

- Single events

e.g. Epilepsy: unpredictable events

Adapted from Jann et al., Neuroimage, 42 (2008), p635-648

Group analysis II – Surface-based alignment