BENEFRI Workshop 2019

Methods in Experimental Neurosciences: From Animal Models to Humans

fMRI in Neuroscience Non-Bold fMRI

Andrea Federspiel

Psychiatric Neuroimaging Unit Translational Research Center University Hospital of Psychiatry University of Bern

andrea.federspiel@upd.unibe.ch

^b UNIVERSITÄT BERN

roadmap

 $u^{\scriptscriptstyle b}$

D UNIVERSITÄT BERN

9:15-10:00 Basic concepts of functional Neuroimaging

fMRI Signal, task-dependent fMRI, resting state fMRI, Functional Network Analysis, processing pipeline, statistical testing, Random Effects, General Linear Model and MRI physics.

10:15-11:00 Basic concepts of structural Neuroimaging

Voxel Based Morphometry, Cortical Thickness, Cortex based inter-subject alignment, Diffusion Tensor Imaging, Tract-Based Spatial Statics.

11:15-12:00 Advanced Neuroimaging Methods in Neurosciences

Non-BOLD fMRI, Cerebral Blood flow (CBF), calibrated fMRI, Multimodal Imaging.

BERN

Introduction

Meachnisms in fMRI

UNIVERSITÄT BERN

Rest

Task

BOLD fMRI

Diffusion fMRI

b UNIVERSITÄT BERN

b

Obata, T. et al 2004 Neuroimage. 21:144-153.

Cerebral blood flow (CBF) with Arterial Spin Labeling (ASL)

b UNIVERSITÄT BERN

ีน

MR: ASL

fMRI using ASL

b UNIVERSITÄT BERN

U

Post label delay

- δ_a Vascular Transit Time
- *w* Post label delay
- δ Tissue transit time
- au Duration of labeling pulse

CBF timing

b UNIVERSITÄT BERN

b

ั้น

Subtraction strategies

D UNIVERSITÄT BERN

Measurement: Label image, Control image,.....

L1, C1, L2, C2, L3, C3, ...

Time [Volumes]

Simple subtraction: C1-L1, C2-L2, ...

Surround subtraction: (C1+C2)/2-L1, (C2+C3)/2-L2, ...

Sinc subtraction: C3/2-L1, C5/2-L2, ...

Wong, E.C., Buxton, R.B., Frank, L.R., 1997. Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. *NMR Biomed.* 10, 237–249.

Aguirre, G.K. Detre, J.A. Zarahn, E. Alsop, D.C. 2002. Experimental design and the relative sensitivity of BOLD and perfusion fMRI. *Neuroimage*. **15**:488-500.

ASL processing

D UNIVERSITÄT BERN

- > 3-D motion detection and correction.
- > Co-registration of 2-D functional and 3-D structural MRI.
- > Spatial smoothing with a 8-mm FWHM Gaussian kernel.
- Voxelwise GLM-based correlation of the signal time course with an appropriate reference function.
- Designmatrix: convolution of a standard fixed boxcar function with a gamma-variate hemodynamic response model.
- > CBF quantification according to Wang J.J.

Perfusion quantification CASL

UNIVERSITÄT BERN

$$CBF = \left(\frac{\lambda \cdot \Delta M}{2 \cdot \alpha \cdot \langle M_{control} \rangle \cdot T_{Lb}}\right) \cdot \left(\frac{1}{\frac{-(\frac{D_{t,slice}}{T_{Lb}}) - e^{-(\frac{(D_{t,slice} + L_{t})}{T_{Lb}})}}{e^{-(\frac{D_{t,slice}}{T_{Lb}}) - e^{-(\frac{(D_{t,slice} + L_{t})}{T_{Lb}})}}\right)$$

 $\Delta M \\ \left\langle M_{control} \right\rangle$

 $D_{t,slice}$

λ

Control-Label image

 $_{ol}$ Average control images, or M₀ equilibrium Magnetization

post-labeling delay + slice time

 L_t Label time

blood/tissue water partition coefficient [ml/g]

- α tagging efficiency
- T_{Ib} Relaxation time of blood

ml/100 g /min

UNIVERSITÄT BERN

Relative SNR for BOLD and Perfusion

Aguirre, G.K. Detre, J.A. Zarahn, E. Alsop, D.C. 2002. Experimental design and the relative sensitivity of BOLD and perfusion fMRI. *Neuroimage.* **15**:488-500.

Validated: Wang, J. Aguirre, G.K. Kimberg, D.Y. Roc, A.C. Li, L. Detre, J.A. 2003. Arterial spin labeling perfusion fMRI with very low task frequency. Magn Reson. Med. 49:796-802.

Temporal Characteristics of Perfusion and BOLD FMRI

D UNIVERSITÄT BERN

b

U

Wang et al. MRM (2003)

CBF-ASL applications in clinical setting

> Acute and chronic cerebrovascular disease / Stroke

- > Tumor and Angiogenesis
- > CNS neoplasms
- > Epilepsy
- > Aging and Development / Pediatry
- > Neurodegenerative diseases
- > Neuropsychiatric disorders
- > Addiction, Stress, etc.

UNIVERSITÄT

BOLD fMRI in Patient/Drug

Interpretation of BOLD results sometimes ambiguous!

^b UNIVERSITÄT BERN

Effect of hypo/hypercapnia

D UNIVERSITÄT BERN

↓ CO2 Hypocapnia Faster BOLD signal / higher BOLD signal

↑ CO2 Hypercapnia slower BOLD signal / lower BOLD signal

Effect of Caffein

b UNIVERSITÄT BERN

Caffein has similar effect on CBF like hypercapnia

But, no detection with BOLD !

No significant differences in BOLD between young/old Significant differences in CBF between young/old

Restom K. et al. 2007 Neuroimage. 37(2):430-9.

$oldsymbol{u}^{\scriptscriptstyle \mathsf{b}}$

Effect of Alzheimer's disease risk

^b UNIVERSITÄT BERN

Conclusion

D UNIVERSITÄT BERN

> BOLD signal is a complex function of baseline state and changes in CBF, CBV; CMRO2

> May reflect differences in baseline vasculature or metabolic state

> Calibrated fMRI may be useful in presence of disease, medication, age...

> BOLD activations should be interpreted with caution, and do not necessarily reflect differences in neuronal activation.

Hypothesis

D UNIVERSITÄT BERN

- During CO₂ administration we expect no significant changes in total amount of neuronal activation in the human brain.
- Therefore, within the same subject and with the same recording setup, during resting state we expect to observe no changes in EEG (frequency bands) under hypercapnia.
- > We expect CMRO₂ to remain constant during this setting

EEG setting

b UNIVERSITÄT BERN

U

EEG resting test outside MR scanner.....and EEG simultaneous during BOLD recoding.

EEG /fMRI simultaneous recording

^b UNIVERSITÄT BERN

Mounting EEG trough head coil Visible are CO_2 face mask, LCD goggles, hart rate meter and expiration recoding capno-meter.

Simultaneous EEG/fMRI recoding is ready.

Visible are capno-meter and hart rate meter device (left)

LCD goggle device (bottom, right).

Calibrated fMRI "Davis Model"

D UNIVERSITÄT BERN

CO₂ administration / Visual stimulus

b UNIVERSITÄT BERN

ASL / BOLD / EEG scan during CO₂

2 Hz full-field flashing checkerboard pattern with fixation cross Visual display over LCD MR compatible goggles

fMRI results: air + visual stimulus

D UNIVERSITÄT BERN

U

fMRI results: hypercapnia

D UNIVERSITÄT BERN

U

Estimation of M and CMRO₂

D UNIVERSITÄT BERN

	Rest	Stimulus	Estimation
BOLD Air		0.48 ± 0.72	
BOLD 7 % CO ₂	0.71 ± 0.87		
ASL Air		13.57 ± 9.72	
ASL 7 % CO ₂	26.86 ± 7.40		
Μ			5.02 ± 0.56
CMRO ₂			25.62 ± 0.05

Table 2

Calculated values within lentiform nuclei (LN) and visual cortex (VC) for a region of interest based on CBF activated voxels (mean \pm standard error for 13 subjects)

	% CMRO ₂	n	M (%)
Visual cortex	36.7±1.3	2.21±0.3	5.7±0.2
Lentiform nuclei	**20.1±1.0	**1.58±0.3	5.8 ± 0.2

** Significant difference between VC and LN values with p < 0.01.

Ances B.M. et al. 2008 Neuroimage. 39(4):1510-1521.

b UNIVERSITÄT BERN

EEG spectral results: t-test CO₂ vs Air

Only resting periods are included

P100

-1

1

RMS

U

Current density estimation (sLORETA).

"Davis Model" and EEG

^b UNIVERSITÄT BERN

U

b

$$\frac{\Delta(BOLD)}{BOLD_0} \approx M \left(\left(1 - \left(\frac{CBF}{CBF_0}\right)^{\alpha - \beta} \left(\frac{CMRO_2}{CMRO_{2,0}}\right)^{\beta} \right) \right)$$

Frequency	$\Delta(CMRO_2)/CMRO_2$
θ	$\frac{\Delta(CMRO_2)}{CMRO_2} \approx \frac{\Delta v}{v} = \frac{0.71}{0.68} = 1.044$
α2	$\frac{\Delta(CMRO_2)}{CMRO_2} \approx \frac{\Delta v}{v} = \frac{0.57}{0.53} = 1.075$

Neuronal energy \iff additional work (spiking frequency)

Davis T.L. et al 1998 PNAS 95:1834-39; Hyder F. et al 2004 Stroke 35: 2635-41; Hyder F. et al 2010 Front Neuroeneg 2: 18; Maandag N.J. et al 2007 PNAS 104: 20546-51; Shulman R.G. et al 2007 Neuroimage 36: 277-81;

CMRO₂ under **CO₂** and **EEG**

D UNIVERSITÄT BERN

$$\frac{\Delta(CMRO_2)}{CMRO_2} \approx \frac{\Delta v}{v} \neq const$$

This Pilot Study shows a dependency on frequency and a shows distinct topographic distribution.

$$\frac{\Delta(CMRO_2)}{CMRO_2} \neq const$$

Xu, F., et al., J Cereb Blood Flow Metab, 2011, 31: 58-67.

$$\frac{\Delta(CMRO_2)}{CMRO_2} = const$$

Chen, J.J. and G.B. Pike, J Cereb Blood Flow Metab, 2010, 30: 1094-9.

Cerebral Arterial Territory

Posterior Inferior Cerebellar Artery (PICA) Superior Cerebellar Artery (SCA) Branches from vertebral and basilar artery Anterior Choroideal artery (AchA) Lenticulo-striate arteries (LSA) Anterior cerebral artery (ACA) Middle cerebral artery (MCA) Posterior cerebral artery (PCA)

Selective ASL (sASL): visualization of cerebral arterial territory

^b UNIVERSITÄT BERN

U

perform TOF
 perform "selective ASL"

~ 5 min ~ 7 min

Selective ASL: visualization of cerebral arterial territory

r-ICA VA

Identification left/right Internal Carotid Artery (ICA)
Identification left/right Vertrebral Artery (VA)

^b UNIVERSITÄT BERN

Selective ASL: visualization of cerebral arterial territory

b UNIVERSITÄT BERN

- •Distance between left and right ICA
- •Distance between left ICA and Isocenter
- •Distance between line of Isocenter and Basilar Artery

A B C

sASL: setting

b UNIVERSITÄT BERN

Repeat cycle of Label, Control, L-ICA, R-ICA, Anterior, Posterior.

Average sASL Maps

BERN

Right

Posterior

Anterior

Average sASL Maps in units [ml/100g/min]

UNIVERSITÄT BERN

$$CBF = \left(\frac{\lambda \cdot \Delta M}{2 \cdot \alpha \cdot \langle M_{control} \rangle \cdot T_{Lb}}\right) \cdot \left(\frac{1}{e^{-\left(\frac{D_{t,slice}}{T_{Lb}}\right)} - e^{-\left(\frac{(D_{t,slice} + L_t)}{T_{Lb}}\right)}}\right)$$

Mapping of cerebral vascular territories

^b UNIVERSITÄT BERN

 $\boldsymbol{u}^{'}$

Federspiel, A. Wiest R., Jann K., Gralla J., Mattle H., Dierks T. @ 3T Magnetom Trio Bern

Clinical application of selective ASL

b

U

Indirect measure of Neuronal Activity

^b UNIVERSITÄT BERN

Metabolism

↑ Neuronal Activity
 ↑ CBF ↑ CBV ↑ CMRO₂
 ↓ deoxyHb
 ↑ BOLD

EEG

Electrical signal (postsynaptic potentials) from a large number of neurons

mechanical ?

Cell swelling when Action Potential is generated **Diffusion fMRI**

^b UNIVERSITÄT BERN

linked to transient swelling of cortical cells or transient microstructural changes of neurons or glial cells during activation fDTI

D UNIVERSITÄT BERN

Comparison of BOLD and fDTI SPM for b=1800 s/mm²

BOLD = SDP expansion time course (b=0)

But for b>0

SDP expansion time course always ahead of BOLD

Conclusion

D UNIVERSITÄT BERN

> BOLD signal is a complex function of baseline state and changes in CBF, CBV; CMRO2

> May reflect differences in baseline vasculature or metabolic state

> Calibrated fMRI may be useful in presence of disease, medication, age...

> BOLD activations should be interpreted with caution, and do not necessarily reflect differences in neuronal activation.

>Diffusion changes and BOLD changes refers to different physiological events

>Observed signal changes originated by diffusion The mechanism of diffusion is not vascular