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Introduction

In computational neuroscience, as well as in machine learning, neuromorphic devices promise an accelerated
and scalable alternative to neural network simulations. Their neural connectivity and synaptic capacity depends
on their specific design choices, but is always intrinsically limited. Here, we present a strategy to achieve struc-
tural plasticity that optimizes resource allocation under these constraints by constantly rewiring the pre- and
postsynaptic partners while keeping the neuronal fan-in constant and the connectome sparse. In particular, we
implemented this algorithm on the analog neuromorphic system BrainScaleS-2. It was executed on a custom
embedded digital processor located on chip, accompanying the mixed-signal substrate of spiking neurons and
synapse circuits. We evaluated our implementation in a simple supervised learning scenario, showing its ability
to optimize the network topology with respect to the nature of its training data, as well as its overall computa-
tional efficiency.

Synaptic event filtering enables structural plasticity
for row in 0 ... 31 do

w ← synram_weights_read(row)
w ← w + alpha *
min(f_max,correlation_read(row))
w ← w - beta * w * rates_read()
w ← w + gamma * rng(-1,1)
if w < theta_w then

w← w_init
a← rng(0,k)
synram_labels_write(row,a)

end if
synram_weights_write(row,w)

end for
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Events are identified with an address denoting their source. Spike trains from dif-
ferent origins can be overlayed and injected into a single synapse row. Synapses
filter afferent events by comparing the source address to a label stored in their local
SRAM and forward only matching spikes. Addresses and labels can be reconfigured
by the PPU to implement weight dynamics and structural changes.

Learning receptive fields in a feed-forward network
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The two-layer network consists of a group of receptors and a label population. One
teacher per label neuron ensures excitation of the correct labels during learning.
The inputs project onto the label layer with a potential all-to-all connectivity (gray),
but only a subset of synapses is realized (red).

Informative synapses emerge during training

Exemplary evolution during the
course of a single experiment.
Synapses that receive inputs from
relevant receptors (i.e., those ly-
ing close to the features that are
relevant for their postsynaptic la-
bel neuron) are strengthened to-
wards values that lie above the
pruning threshold θw. All other,
less informative synapses remain
below θw and are pruned at reg-
ular intervals of five epochs.
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Self-organized formation of receptive fields
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Structural plasticity leads to the self-organized formation of receptive fields. The
probability of synapse expression depends on the location of receptors in the feature
space and the class of label neurons. The size of the three emerging clusters is
determined by the receptor radius λ.

Structural plasticity improves learning in sparse networks
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For a constant indegree m of the label neurons (equivalent with the number of
synapse rows on the hardware), classification accuracy improves with larger k
(number of receptors per row), as the neurons gain access to an increasing number
of receptors n = km. For a constant number of receptors n, structural plasticity can
compensate for increased sparsity (reduced indegree m induced by a larger bundle
size k) up to a certain degree.

Efficient implementation of structural plasticity

Duration of a synapse update broken down into
its four individual contributions, including struc-
tural reconfiguration. The hatched areas indicate
the time spent on pseudo-random number gener-
ation. Contributions of the individual terms to the
overall update duration, taking into consideration
that pruning and reassignment are executed five
times less often than synaptic weight updates. pruningregu-
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As compared to other synaptic pruning and reassignment strategies, our algorithm
and implementation of structural plasticity requires a particularly low overhead.
Our implementation scales well with growing system sizes, since it is fully based
on synapse-local quantities.

References
[1] S. Friedmann and J. Schemmel et al., “Demonstrating hybrid learning in a flexible neuromorphic hardware system,” IEEE Transactions on Biomedical Circuits and Systems, vol. 11, no. 1, pp. 128–142, 2017.
[2] S. Billaudelle, Y. Stradmann, K. Schreiber, B. Cramer, A. Baumbach, D. Dold, J. Göltz, A. F. Kungl, T. C. Wunderlich, A. Hartel et al., “Versatile emulation of spiking neural networks on an accelerated neuromorphic substrate,” in 2020 IEEE International Symposium

on Circuits and Systems (ISCAS). IEEE, 2020, pp. 1–5.
[3] S. Billaudelle, B. Cramer, M. A. Petrovici, K. Schreiber, D. Kappel, J. Schemmel, and K. Meier, “Structural plasticity on an accelerated analog neuromorphic hardware system,” Neural Networks, vol. 133, pp. 11–20, 2021.

This research has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement Nos. 720270, 785907 and 945539 (HBP) and the Manfred Stärk Foundation. ∗ equal contribution


